Metal [100] Nanowires with Negative Poisson’s Ratio
نویسندگان
چکیده
When materials are under stretching, occurrence of lateral contraction of materials is commonly observed. This is because Poisson's ratio, the quantity describes the relationship between a lateral strain and applied strain, is positive for nearly all materials. There are some reported structures and materials having negative Poisson's ratio. However, most of them are at macroscale, and reentrant structures and rigid rotating units are the main mechanisms for their negative Poisson's ratio behavior. Here, with numerical and theoretical evidence, we show that metal [100] nanowires with asymmetric cross-sections such as rectangle or ellipse can exhibit negative Poisson's ratio behavior. Furthermore, the negative Poisson's ratio behavior can be further improved by introducing a hole inside the asymmetric nanowires. We show that the surface effect inducing the asymmetric stresses inside the nanowires is a main origin of the superior property.
منابع مشابه
Poisson’s ratio of individual metal nanowires
The measurement of Poisson's ratio of nanomaterials is extremely challenging. Here we report a lateral atomic force microscope experimental method to electromechanically measure the Poisson's ratio and gauge factor of individual nanowires. Under elastic loading conditions we monitor the four-point resistance of individual metallic nanowires as a function of strain and different levels of electr...
متن کاملDesign and Fabrication of Stent with Negative Poisson’s Ratio
The negative Poisson’s ratios can be described in terms of models based on the geometry of the system and the way this geometry changes due to applied loads. As the Poisson’s ratio does not depend on scale hence deformation can take place at the nano to macro level the only requirement is the right combination of the geometry. Our thrust in this paper is to combine our knowledge of tailored enh...
متن کاملNanowires fine tunable fabrication by varying the concentration ratios, the etchant and the plating spices in metal-assisted chemical etching of silicon wafer.
The metal-assisted chemical etching (MACE) was used to synthesis silicon nanowires. The effect of etchant concentration, etching and chemical plating time and doping density on silicon nanowires length were investigated. It is held that the increasing of HF and H2O2 concentrations lead to etching rate increment and formation of wire-like structure. The results show that, the appropriate ratio o...
متن کاملChiral three-dimensional isotropic lattices with negative Poisson’s ratio
Chiral three-dimensional isotropic cubic lattices with rigid cubical nodules and multiple deformable ribs are developed and analyzed via finite element analysis. The lattices exhibit geometry dependent Poisson’s ratio that can be tuned to negative values. Poisson’s ratio decreases from positive to negative values as the number of cells increases. Isotropy is obtained by adjustment of aspect rat...
متن کاملMetal-Enhanced Fluorescence from Silver Nanowires with High Aspect Ratio on Glass Slides for Biosensing Applications
High enhancement of fluorescence emission, improved fluorophore photostability, and significant reduction of fluorescence lifetimes have been obtained from high aspect ratio (>100) silver (Ag) nanowires. These quantities are found to depend on the surface loading of Ag nanowires on glass slides, where the enhancement of fluorescence emission increases with the density of nanowires. The surface ...
متن کامل